
J .  Fluid Mech. (1994), L'oI. 265, p p .  245-263 
Copyright 0 1994 Cambridge University Press 

245 

Stability of inviscid conducting liquid columns 
subjected to a.c. axial magnetic fields 

By ANTONIO CASTELLANOS' 

Departamento Electronica y Electromagnetismo, Universidad de Sevilla, Spain 

Departamento Fisica Aplicada, Universidad de Sevilla, Spain 

AND HELIODORO GONZALEZ'>~ 

(Received 8 February 1993 and in revised form 22 October 1993) 

The natural frequencies and stability criterion for cylindrical inviscid conducting liquid 
bridges and jets subjected to axial alternating magnetic fields in the absence of gravity 
are obtained. For typical conducting materials a frequency greater than 100 Hz is 
enough for a quasi-steady approximation to be valid. On the other hand, for 
frequencies greater than lo5 Hz an inviscid model may not be justified owing to 
competition between viscous and magnetic forces in the vicinity of the free surface. The 
stability is governed by two independent parameters. One is the magnetic Bond 
number, which measures the relative influence of magnetic and capillary forces, and the 
other is the relative penetration length, which is given by the ratio of the penetration 
length of the magnetic field to the radius. The magnetic Bond number is proportional 
to the squared amplitude of the magnetic field and inversely proportional to the surface 
tension. The relative penetration length is inversely proportional to square root of the 
product of the frequency of the applied field and the electrical conductivity of the 
liquid. It is shown in this work that stability is enhanced by either increasing the 
magnetic Bond number or decreasing the relative penetration length. 

1. Introduction 
The motivation for this work is the enhancement of the stabilization of the free 

interface of the molten zone in the crucible-free float zone technique. In this technique 
a liquid bridge is formed between the solidification and melting front interfaces of an 
ingot rod, locally heated. In the absence of gravity, capillary forces are able to hold a 
cylindrical bridge if its length L does not exceed its perimeter 2nR, R being the radius 
of the cylinder (Rayleigh's criterion). For insulating liquids it is possible to increase 
substantially the maximum length attainable using dielectric forces (Gonzalez et al. 
1989). Application of intense electric fields is not possible for semiconductor materials 
(Si, GaAs), owing to their high conductivity in the molten phase. For these cases, which 
are of the greatest technological interest, magnetic forces could be of help to stabilize 
the melted zone. In fact, earlier researchers and users of the float zone technique for 
growing high-purity silicon crystals were well aware of the stabilizing effect of magnetic 
forces (Keller & Muhlbauer 1981). These forces appear naturally in the system when 
radio-frequency magnetic fields are used to heat by induction and melt the 
polycrystalline feed rod. According to the same authors a crude estimation of the 
supporting electrodynamic pressure for a molten silicon column with R = 2.5 cm, to 
which an input electrical power of 4 kW with a frequency of 4 MHz is applied, gives 
p = 2.13 mbar, to be compared to the pressure p = 0.32 mbar due to surface tension. 
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The electrodynamic pressure is probably overestimated, but based on this argument 
and empirical observations, Keller & Miihlbauer recommend induction heating as the 
most beneficial heating method for semiconducting materials. In real situations the 
melted rod is subjected to instabilities due to variations in surface tension induced by 
thermal gradients, residual gravity, rotation, axial acceleration, etc. (see Hurle, Muller 
& Nitsche 1987 and references therein). Here we shall consider an idealized situation in 
which these complications are disregarded in order to understand the physics due to the 
magnetic field. The physical configuration that we present in the next section envisages 
a laboratory experiment not directly related to the floating zone technique. 
Nevertheless, in our opinion, the results may be also of interest for this technique. 

Notwithstanding the practical importance of magnetic forces, very few detailed 
theoretical studies have been devoted to this subject. It is interesting to note that a long 
time ago, Chandrasekhar, in a classical study, demonstrated that for a jet of a perfectly 
conducting liquid both the critical wavenumber and the initial growth rate of the most 
unstable disturbance decrease as the strength of a steady magnetic field increases 
(Chandrasekhar 1961). During the completion of this work we have become aware of 
another paper (Nicolas 1992) that extends these results to the liquid bridge 
configuration. Nevertheless, as pointed out by Chandrasekhar, the stabilizing effect of 
axial steady magnetic fields for liquid metal (or molten semiconductor) bridges is 
negligibly small owing to their finite conductivity. 

Recently, an interesting work has been published, where the authors (Riahi & 
Walker 1989) discuss the effect of magnetic forces upon the shape and stability of a 
liquid zone, considering a magnetic field generated by a single coil. In their paper the 
induction coil is idealized as a line current so close to the float zone that locally the 
surface may be considered as planar and the method of images is applied to determine 
the value of the magnetic field outside the rod. The frequency is high enough to treat 
the outer problem as a magnetohydrostatic one, with zero magnetic field inside the 
melted zone. It is readily apparent from the analysis that the magnetic field (tangential 
to the interface) plays a stabilizing role, but the pinch effect may destabilize the float 
zone, past a critical value of the magnetic field, by spilling the melt at the point where 
the melted zone intersects the crystal phase. Garnier & Moreau (1983), motivated by 
shape control, stability and purification problems in the continuous casting of liquid 
metals, have also demonstrated the positive influence of tangential alternating fields on 
the stability of planar interfaces. They have shown by means of an inviscid model that 
for a given magnetic field intensity, the stability increases as the frequency is increased. 

In this paper we extend the work of Garnier & Moreau to cylindrical interfaces, 
particularized to vacuum as the outer media. We also discuss the validity of an inviscid 
approach. We consider the stability of liquid columns, either of finite length (liquid 
bridges) or infinite length (jets). Contrary to the case of a planar interface, it is now 
the capillary instability mechanism that is responsible for the breaking of the column 
in the absence of magnetic field. Moreover, in the liquid bridge configuration there are 
two new distances, the radius of the liquid bridge R and the distance between the 
supporting solids L, in addition to the penetration length of the field S = (upo gc)-i (w 
is the angular frequency of the applied magnetic field). Thus, two new parameters 
d = S/R, the relative penetration length, and A = L/2R, the slenderness, enter into the 
formulation of the problem. The boundary conditions at the solid-liquid interfaces 
make the analysis more involved as the whole set of natural oscillation modes of the 
jet are coupled. With respect to the anchoring conditions, a free contact angle is 
assumed to allow an exact analytical treatment of the problem. The dispersion relation 
of the jet is obtained separately because in the limit of L going to infinity the modes 
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pertaining to the liquid bridge configuration remain coupled. The limit of the radius 
going to infinity is obtained and a comparison with the results of Garnier & Moreau 
is made. 

For the problem that we shall deal with, some simplifications can be made from 
dimensional arguments based upon the values of the physical constants of typical 
molten semiconductors, or liquid metals. The equation governing the magnetic field is, 
from Maxwell's equations, 

aH a2H 
V X V X H =  - ~ e ~ o - + + e ~ o V ~ ( ~ ~ H ) - ~ o ~ o -  

at a t 2  ' 

where we assume that the conducting liquid is essentially a non-polarizable and non- 
magnetizable media, and that the constitutive law for the current density is j = 

cre(E+,uo v x H) ,  with eo and ,uo the vacuum permittivity and permeability respectively, 
(T, the electrical conductivity and E the electric field. As is well known, the radiative 
term, eo,uoi32H/at2, is negligibly small in the radio-frequency range. The ratio of the 
convective term, cre,uO V x (v  x H),  to the diffusive term, cre,uo aH/at, is of the order of 
RISft,, where f = 0 / 2 q  and t, = (pR3/cr)i, p being the mass density and cr the surface 
tension. According to this simple dimensional argument, for R = 2 cm and f > 100 Hz, 
(1) may be reduced to 

aH V x V x H = - repo- ,  
at 

where it has been assumed that the liquid velocity is not larger than Rlt,. 
In what follows the diffusive term will be kept as we are interested in studying the 

effect of alternating magnetic fields on the stability of our system. 
On the other hand, for a liquid bridge of radius R, the Reynolds numbers Re = 

S2/vt, (v is the kinematic viscosity) is given by the ratio of the inertial term to the 
viscous term, or equivalently as the ratio of the vorticity diffusion time to the 
mechanical one, where this latter is based on the capillary forces. Spatial variations of 
the velocity are estimated using the penetration length because the magnetic forces are 
concentrated in a narrow region adjacent to the interface and cause strong variations 
in pressure and radial velocity (see figure 4 below). Molten silicon at a temperature of 
1690 K has a density p = 2.530 x lo3 kg mP3, surface tension cr = 0.8 N m-l, kinematic 
viscosity v = 0.35 x lop6 m s-' (Martinez & Croll 1992) and electrical conductivity 
cre = 1.1 1 x lo6 S m-l (Keller & Muhlbauer 1981). For a liquid bridge of radius R = 
2 x lo-' m subjected to magnetic fields of frequency f = lo5 Hz, we find t ,  = 0.16 s, 
S = m and consequently Re = 20, so that an inviscid approximation could be 
justified. However, greater frequencies result in lower Reynolds number so that there 
exists competition between magnetic and viscous forces in the skin-depth layer. 

This paper is organized as follows. Section 2 is devoted to the physical system under 
investigation, the governing equations and the basic hydrostatic solution. In $3 a linear 
model is developed to give the dynamical response of the bridge to small perturbations, 
including the stability criterion as a function of the relevant parameters. The limit of 
imposed fields of infinite frequency is considered at the end of the section and serves 
as a test of the previous calculations. The case of the jet is treated separately in $4 
owing to its theoretical importance. In $ 5 we discuss the dependence on parameters for 
the natural frequencies and stability of the jet and liquid bridge. Finally in $6 the main 
conclusions are drawn. 
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FIGURE 1.  Schematic of the physical system, indicating relevant physical parameters. 

2. Formulation of the problem 
Let us consider a conducting liquid column of radius R in zero-gravity conditions 

anchored between two parallel planes a distance L apart and surrounded by a gaseous 
ambient. Such a configuration is known in the literature as a liquid bridge. We assume 
that the contact line is fixed with free contact angle. In a possible laboratory 
experiment free contact angles might be achieved by using sharp-edged supporting 
disks to anchor the bridge. The liquid volume is fixed at I/= 7cR2L. We model the 
liquid as having electrical conductivity CT~, density p, the vacuum permeability p,,, and 
surface tension CT, and finally we assume that it is incompressible and inviscid. The 
surrounding gas also has the vacuum permeability and a negligible density compared 
with that of the liquid. 

The liquid bridge is located between the parallel poles of a large section 
electromagnet, so that a uniform alternating magnetic field of frequency w is imposed 
over a wide region including the bridge. Therefore, for regions inside the electromagnet 
gap but far from the liquid column the magnetic field is written HJt )  = H, cos (wt) e,, 
where we use cylindrical coordinates ( r ,  z )  defined in figure 1. We restrict ourselves to 
axisymmetric geometries of the liquid surface, which we represent by 

F(r, z ,  t )  = Y - f ( z ,  t )  = 0. (3) 

Outside the liquid zone there is no current and the magnetic field H" is derived from 
a harmonic potential : 

H" = Q$, Vz$ = 0. (4) 

Inside the conducting liquid the equations governing the magnetic field Hi, 
according to the discussion in the introduction, are 

V.Hi  = 0, ( 5 )  

am 
at 

v x v x Hz + CTepo- = 0. 

The dynamics of the outer medium is fully described by a constant pressure p", 
because of the assumption of negligible gas density. In the liquid region we have 
pressure and velocity fields, p(r ,  z ,  t )  and u(r, z ,  t )  respectively, governed by the 
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continuity equation for the incompressible case and the Euler equation including a 
magnetic force term : 

v*v = 0,  (7) 

(8) 
av 
at 

P-+PV-VV = -Vp+po(V x Hi)  x II". 

Using the identity (V x Hi)  x Hi = (Hi - 0) Hi - $VHi2 and ( 5 )  we can rewrite (8) in the 
form 

(9) 

with l7 given by 17 = ~ + & L ~ ( V H ~ ) ~ .  (10) 

pv. (V'VV) = -v217+po v .  [(I%.V) I%]. (11) 

av 
at 

P-+PV*VV = -V17+po(H"*V) Hi, 

Taking the divergence of (9) and using (7) we find 

To define completely the mathematical problem we must impose the following 

(i) At the planes z = 4-$L 
boundary conditions. 

U ,  = 0, H: = H," = 0, (12) 

i.e. the fluid does not penetrate into the magnet and there the tangential component 
of the magnetic field is zero. 

(ii) At the symmetry axis, Hi, p and v must be non-singular. 
(iii) At the free surface F(r, z, t )  = 0, the magnetic field is continuous, 

H W Z ,  t), z ,  0 = HO(f(Z, 0, z, 0, (13) 

the liquid surface is attached to the fluid motion (kinematic condition), i.e. 

aF 
-+v*VF= 0,  
at 

and the normal stress jump is equal to the capillary jump, 

P i ( f ( Z ,  0, z, t> -PO = d l / R l +  l/R,h (15) 

where R, and R, are the principal radii of curvature at a given surface point, which we 
can calculate by defining a unit normal vector to the free surface as the function 

evaluated at F = 0. Then, the mean curvature of the surface is (l/Rl + l/R,) = Van 
also evaluated at F = 0. 

In the last equation the jump in the normal magnetic stress does not appear because 
the magnetic properties of both media are identical and the field is continuous. More 
precisely, the magnetic stress applied on a surface point is 

where HZ = H".n. The magnetic stress is zero because of (13). On the other hand, this 
result makes the problem compatible with the inviscid approximation. Otherwise, the 
effects of viscosity would be needed to compensate the tangential stresses. 
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continuity of the magnetic field across the free surface we have 
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It is convenient to express (15) in terms of the modified pressure l7. Using the 

17-p0-p0Ho2 = 0-V.n. (18) 

Finally, preservation of the cylindrical volume leads to the following constraint for 
the shape of the bridge: 

L / 2  lPLl2 dzf(z)2 = LR2. (19) 

The magneto-mechanical problem formulated above admits a hydrostatic solution 
(us = 0) represented by a cylindrical shape of radius R and a magnetic field which is 
uniform in the outer region and diffuses to some extent into the conducting liquid: 

f s  = R ;  H i  = Ho cos wte,, (20) 

where Re stands for the real part of the argument, I. is the modified Bessel function 
of the first kind and 6, already introduced, is the penetration length in the conducting 
liquid for the imposed a.c. magnetic field. The case of a jet corresponds to a liquid 
bridge of infinite length for which the boundary conditions (12) no longer apply. 

3. Small-oscillation analysis for the liquid bridge 
We are interested in the stability with respect to small disturbances of the static 

solution. When the free surface is deformed, no other hydrostatic solution, i.e. with 
zero velocity field, is possible. This is apparent by taking the curl of the magnetic 
force in (8), which is in general non-zero for a non-homogeneous magnetic field and 
consequently the velocity has vectorial sources. Static analysis is possible only when, 
for any equilibrium shape we have u = 0, which is not the case except for the limit of 
infinite imposed field frequency o, which will be discussed at the end of this section. 

Let us perturb the free surface in the form 

f ( z ,  t) = R + Re [ef,(z) eist], (23) 

with e < R, which represents a generic normal mode with natural frequency s. Any 
arbitrary small disturbance of the liquid shape may be written as a linear combination 
of these modes. We assume that e is a good parameter to expand any other magnitude 
describing the system. However, we cannot adopt the same time dependence for all 
quantities because the imposed magnetic field has his own timescale. 

3.1. Time dependences 
As in Garnier & Moreau (1983), equation (13) gives the condition that relates the 
surface shape and the perturbed magnetic fields. Putting 

Hi = Hi(r, t )  + eh,(r, z ,  t),  

H" = Hi(r, t )  + eV$,,(r, z ,  t )  
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and substituting in the tangential component of (13) we obtain the following linearized 
condition : 

The first term in the left-hand side of this equation introduces the product of both 
existing time dependences. The natural choices for the perturbed magnetic fields are 

h,,(r, z ,  t )  = Re [h+(r, z )  ei(ssw) + k ( r ,  z )  ei(s-w) t], 

$,(r, z ,  t) = Re [$+(r, z )  ei(s+w)t + q5-(r, z )  ei(s-")t]. 
(27) 

(28) 

Now we have two independent problems for the complex spatial functions h+(r,z) ,  
$+(Y, z )  and h-(r, z) ,  $-(r, z) ,  namely 

V2$+ - = 0 (29) 

for the outer region and (V T i/62,) h ,  = 0, 

V * h ,  = 0 - 

for the inner region, where 8,  - = bo ce(w & s)]-i. The boundary conditions are 

Now we focus our attention on the equation for the pressure. The right-hand side 
has the following first-order term in e :  

As the order of magnitude of s is given by the inverse of the capillary time t ,  = 
@R3/c)i ,  and we have Is1 4 w ,  we may calculate the average of (34) over a period of the 
fast scale T = 2n/w at an arbitrary time to: 

This resulting time dependence justifies the adoption of the slow timescale for the 
fluid mechanical magnitudes : 
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bearing in mind that we neglect a highly pulsating term in the magnetic force 
(frequency 2w). This is the main assumption of the quasi-steady approximation. 

3.2. Resolution in volume 
Let us make lengths non-dimensional with R and magnetic fields with H,. Equations 
(29F(31) have the formal solutions in terms of infinite sine and cosine Fourier-Bessel 
series : 

where A = L(2R represents the slenderness of the liquid bridge, x, = nz /2A,  k' = 
(xi + iR2/62,)r and $?) and h:) are coefficients to be determined from the conditions 
at the free-surface. Implicit use of some boundary conditions has been made to 
construct these solutions. In particular we have selected the dependence on the axial 
coordinate to make null the tangential component of the magnetic fields at the 
electromagnet poles, i.e. z = f A ,  and we have also used conditions of regularity at the 
symmetry axis and decaying behaviour for increasing r to select the radial dependence 
in both regions. We will from now on suppress any distinction between both definitions 
of the penetration depths 6, because lwfs l  101 in the quasi-steady approximation. 
Thus, only the penetration depth 6 is considered everywhere and, on the other hand, 
k; becomes the complex conjugate of k:. 

According to the scaling of lengths with the anchoring radius R, we observe the 
appearance in the definition of k z  of the non-dimensional parameter SIR, the 'relative 
penetration depth'. 

We are now in position to solve for the perturbed pressure, which will be made non- 
dimensional by scaling with the capillary pressure jump g/R. Equation ( 1  1 )  yields to 
first order 

li 

According to (35) and (39) we have an inhomogeneity expressed as an infinite cosine 
series in the z-dependence. This suggests a similar dependence for the pressure: 

where the Z7,(r) satisfy 

(42) 

(43) 

and where we define the magnetic Bond number B, as 

B, = po H," R /2g  
which is a measure of the relative influence of the magnetic and capillary forces for the 
static configuration. Notice that B, may be also expressed in the form (w,/wJ2, with 
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wA = (,u/2p)k(H0/R) the Alfvkn frequency and w, the capillary frequency. Here we 
prefer to stress the role of B, as the ratio of magnetic to capillary forces and in this 
respect it is analogous to the classical Bond number, which is the ratio of gravitational 
to capillary forces. 

A particular solution to this ordinary differential equation is obtained by inspection. 
The general solution which is regular at the symmetry axis is 

for n =!= 0, where the p, is a new infinite set of integration constants to be determined 
from the remaining boundary conditions. 

Finally, the velocity field is obtained from linearization of (9). Taking the time 
average of the magnetic force, in non-dimensional form we have for the radial 
component : 

is0 or eist - "oeist+2BH ar (Hs(r, t)$), (45) 

where all the time dependences are consistent. 

3.3. Use of the boundary conditions 
The free surface shapefo(z) is governed by (18), which represents the balance in the 
normal stress at the interface. This equation is, as usual, made non-dimensional, 
linearized and finally time averaged to give 

We have a second-order ordinary differential equation forfo(z) whose inhomogeneity 
appears as a Fourier cosine series. This is a situation already found for the liquid bridge 
configuration in other contexts, e.g. Sanz (1985) and Gonzalez et al. (1989). In these 
works the procedure has been to seek a particular solution as another cosine series and 
to add the solution of the homogeneous equation, which is later expanded on the same 
cosine complete basis in the interval [ - A ,  A ] .  In this way, we are able to express all the 
remaining boundary conditions over fo (z )  as separate algebraic equations for the 
Fourier coefficients. 

We start this procedure by seeking a particular solution of (46) in the form cz',, a, cos [x,(z + A)] .  We obtain the following relation for n =+ 0 : 

(l-xi)an = BHxn(q5:+q5;)-pn-B (47) 

and a,, = -po. The solution to the homogeneous equation associated with (46) is 
m 

f,(z) = a sin z + pcos z = c rn cos [xn(z + A ) ] ,  (48) 
n=o 

where ro = /?sin ( A ) / A  and for n =I= 0 

9 

2a cos A 
for n odd 

A( 1 -xi) 

2/? sin A 
for n even. 

A( 1 -xi) 

(49) 

F L M  265 
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The general solution is then 
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The volume preservation condition is linearized to give 

(51) 

Introducing (50) in (51) yields a,, + ro = 0, i.e. the summation in (50) actually starts with 
n = 1. Notice that the volume condition gives the value of po  once the integration 
constant /3 is determined. 

From (32) and (33) we obtain new relations among a,, Y,, h i  and 4; : 

Finally, we linearize the kinematic condition, (14), to give 

and substitute the radial velocity from (45). After some algebra the result is 

Equations (52)-(55) allow us to write all the unknown coefficients in terms of those of 
the surface shape a, + r,. We introduce the notation 

where 

Substitution in (47) leads to 

where 

(57) 
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The anchoring condition is written as fo(  f A )  = 0 or, according to (50), 

C (a, + I n )  (k 1)" = 0. 
n 

These are two conditions that we add and subtract together to give, using (49): 

even 

If a and /3 are both zero all the perturbed quantities also become zero and the trivial 
solution is recovered. Therefore, the expression in brackets must be zero to describe 
oscillations. Both equations define the natural oscillation frequencies for the cylindrical 
liquid bridge as a function of the remaining parameters, s(A, B,, d) .  If the applied 
magnetic field is zero these frequencies become those given in Sanz (1985) for liquid 
bridges in the absence of an outer bath. 

The limit of infinite frequency 
Before discussing the above results we shall solve independently the limiting case of 

infinite frequency of the imposed magnetic field. In this limit we have no penetration 
of the field into the liquid zone and an azimuthal electric surface current is responsible 
for the jump in the tangential component of H. The time dependence of the applied 
field may be omitted in the formulation of the problem. 

The perturbed magnetic problem reduces to finding the harmonic potential 
q50(~,~)eist outside the conducting liquid whose solution is described by one of q5+ 
and 4- in (37). We will drop the superindexes in the present analysis. The boundary 
conditions at r = f(z, t )  are now 

n - Vq5 = 0, n x Vq5 = K, (64) 

where Kis the surface current at the interface. The last condition merely gives the value 
of this new magnitude and is not relevant in our analysis. The linearization of the 
former gives, in non-dimensional form, 

- ( l , z )  w o  = -((z). d f  
a Z  dz 

For the fluid mechanical problem inside the conducting liquid the magnetic forces in 
the volume disappear in this limit and they are now exerted upon the free surface. We 
thus have p i  = p i  + ITo(r, z )  eist with 

v2n0 = 0, 
whose regular solution is 

The normal stress balance at the interface is modified by the existence of a non-zero 
jump in the Maxwell stress tensor. In non-dimensional form we have 
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Linearization of this equation gives 
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Finally, the linearized kinematic condition (54) remains valid, where now the radial 
velocity satisfies isv,, = - apO/ar. 

The subsequent analysis is quite similar to the previous one. The final result may be 
still expressed by (62) and (63) with a new definition of rn: 

The equations that governs the system in the limit of infinite frequency are not easily 
found from those corresponding to the general case by considering the relative 
penetration depth going to zero. However, if we perform this limit in the final 
expression taking into account the asymptotic behaviour of the Bessel functions for 
large arguments in (61) we observe full agreement between both definitions of rn. 

It is important to observe that this limit is an exact result beyond the validity range 
of the inviscid model. In fact it is possible to obtain the stability criterion (independently 
of the dynamical behaviour of the bridge) from a purely static analysis, as is done for 
dielectric liquid bridges subjected to axial electric fields in Gonzalez et al. (1989). As the 
velocity does not enter into the static formulation the result is valid for liquids of 
arbitrary viscosity. 

4. Dispersion relation for the jet 
The differences in mathematical treatment between the bridge and the jet are the 

boundary conditions at z = &;A for all magnitudes. The volume equations and 
conditions at the free surface remain valid. The set of eigenfrequencies is now 
continuous and we must deal with a dispersion relation relating frequencies and 
wavenumbers of the disturbances rather than a countably infinite set of natural 
frequencies. For a linear problem the superposition principle holds and a general 
perturbation of the interface may be decomposed into independent modes of the form 

(71) 

with x = kR and k the disturbance wavenumber. This assumption is characteristic of 
a temporal instability approach to the jet dynamics. 

f ( z ,  t )  = 1 + Re [ek ei(st+sz)], 

The disturbed magnetic and pressure fields are given by 
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where y+ = (x2  + iRz/82,)i z (xz  f iR2/Sz)i. Substituting these expressions into the 
boundary conditions at ihe free surface (45), (31), (32) and (54) after elimination of u, 
from (44), we obtain the dispersion relation 

1 - ~ ~ + ~ s ~ + B , ~ ,  = 0, 
X l ; ( X )  

withr,  givenby r =- ro(x) C,, + 2 Re (x2C& y k p 2  - xC&) 
Ic - XII(X) (77) 

which is obviously connected with (59), and where C&, C& and C,, are defined from 
(55)-(57) by making the substitutions x and y+  instead of x ,  and k: respectively. 

Let us consider the limit of infinite radius in (76). The intervening Bessel functions 
have arguments proportional to R and may be substituted by unity in the limit because 
they always appear as quotients of two functions of the same kind and argument. In 
this limit we have (with explicit dependence on R) 

C,, + (kR)' Re [(az f i + a(a2 f i)i)p'] 

with the new parameter a = k8. Notice that this dimensionless wavenumber is l / d 2  
times that defined by Garnier & Moreau in their work. In dimensional form we arrive 
at the dispersion relation for a planar interface: 

ps2 = @k3 +&!Lo H; k2F(a), (81) 

where 

which is the same function for the dependence on the penetration length as in Garnier 
& Moreau's work. 

5. Results 
We start this section with the analysis of the dispersion relation for the jet. In figure 

2 the square of the frequency is plotted as a function of the non-dimensional 
wavenumber x = kR for fixed relative penetration length d = 0.1 and different values 
of the magnetic Bond number, B,. Negative squared frequencies imply exponentially 
growing behaviour, which is characteristic of long-wavelength disturbances in jets. The 
curve with B,  = 0 was obtained by Rayleigh (1945) for axisymmetric capillary jets. We 
observe that the region of unstable wavenumbers decreases as the magnetic field 
increases. In figure 3 we illustrate the stabilizing effect of decreasing the penetration 
length for a given magnetic Bond number (B,  = 10). For d = 5, i.e. a situation with 
a weakly non-uniform field inside the conducting liquid, the unstable region virtually 
covers the entire region k < 1, as in the absence of magnetic forces. The curve 
corresponding to d = 0.01 is representative of the case of no penetration (infinite 
applied frequency). 

Consequently, the main effect of the magnetic forces is to stabilize the jet by 
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FIGURE 2. Dispersion relation for the jet. s2 and x are the dimensionless squared oscillation frequency 
and the wavenumber respectively. The relative penetration length is d = 0.1 for all the curves, which 
have been obtained for different magnetic Bond number. 
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FIGURE 3. Dispersion relation for B, = 10 and different d. 

decreasinB the most unstable wavenumber (minima of the curves) and the growth 
factor Is21z associated with it. The mechanism is most effective in the limit of zero field 
penetration. 

Figure 4 shows the radial dependence of v,, the radial component of the velocity 
field, for x = 1, B,  = 10 and three different values of the relative penetration length d. 
As this latter parameter decreases, the velocity profile suffers stronger variations near 
the free surface. This phenomenon enhances the role of the viscosity in the dynamics 
of the liquid column for very high field frequencies. From the dependences on the 
variables I and z, it is clear that the velocity field is organized in toroidal rolls of length 
27cR/x. The change in sign of the function v,(r) observed for small din figure 4 implies 
the appearance of a secondary roll near the free surface circulating in the opposite 
direction, its width decreasing as this parameter decreases. 
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FIGURE 4. Radial dependence of the radial component of the velocity field for the jet. The curves are 
calculated for B, = 10, non-dimensional wavelength x = 1 and different values of d. The formation 
of a boundary layer near the free surface is clearly shown. 

In the case of liquid bridges, the natural frequencies are obtained from the implicit 
relations given by (62) and (63). Owing to the non-dissipative nature of the model we 
may demonstrate that s2 must be real, as in the case of zero applied field (Sanz 1985). 
For s2 > 0 there is oscillatory behaviour and for s2 < 0 the perturbations grow 
exponentially, i.e. there is instability to infinitesimal disturbances. 

The functions dependent on s, A ,  B, and d that give these implicit equations are 
infinite series that must be conveniently approximated. The method followed was to 
obtain asymptotic expressions for the general term for large n that may be 
approximated as a sum of a few terms (four in our computations) whose dependence on 
n is proportional to l / n z ,  where I is a positive integer greater than or equal to two. The 
larger number of asymptotic terms taken into account, the better is the convergence of 
the method. Only a number of terms of the original infinite series is exactly computed, 
say N (dependent on the particular values of A and d) .  The remaining terms forming 
the 'queue' are related to the Riemann functions [(;(I) and they are calculated from 
tables (Abramowitz & Stegun 1972). 

The implicit equations are solved using the Newton-Raphson method. For this 
purpose it is important to realize that for fixed values of A ,  B, and d the infinite series 
has a structure of alternating zeros and singular points like the function tans. As the 
singular points are those given by each term in the infinite series, we can easily 
determine bounded regions where only one zero exists. Each zero s,, where the 
subindex is an ordering parameter, corresponds to a solution of (62) or (63) and 
represent a natural oscillation frequency (or growth factor) of the interface. The shape 
and associated magnetic, pressure and velocity fields are obtained by putting s = s, in 
the corresponding expressions. The resulting shapes are even or odd functions of z ,  so 
we have respectively two infinite families of antisymmetric and symmetric normal 
modes with respect to the plane z = 0. There is linear stability for those values of the 
parameters that make positive all the squared natural frequencies s t .  All these 
properties are well known from the dynamics of cylindrical inviscid liquid bridges for 
zero applied field (Sanz 1985). In this latter case the slenderness can be considered an 
ordering parameter because, if we increase it, all the numbers s t  decrease until they 
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FIGURE 5. Natural frequency s of the axisymmetric mode, as a function of the magnetic Bond number 
for different values of the slenderness. Here only the case of zero relative penetration length (d = 0) 
is considered. 

become negative consecutively. The first value of the slenderness for which we have at 
least one negative value of the squared natural frequencies is A = K, i.e. the classical 
result given by Rayleigh for the capillary instability of a jet, also valid for a cylindrical 
liquid bridge. This mode is characterized by an amphoric profile, i.e. a sole node. As 
a general rule, the destabilization order m of the modes as A increases coincides with 
the number of nodes off,(z). 

In the case of a non-zero applied magnetic field these features remain valid. 
However, we observe a general increase in all the natural frequencies as the field 
intensity increases. This conclusion is apparent from figure 5 ,  where we represent the 
frequency corresponding to the first destabilized mode as a function of the magnetic 
Bond number for infinite imposed field frequency or perfectly conducting liquids 
(d = 0) and selected values of the slenderness A .  Other less dangerous modes exhibit 
similar behaviour as the field intensity increases and we do not present them. Instability 
occurs at s = 0 along each curve. 

Concerning the role of the relative penetration depth d, we may state as a general 
tendency that sf decreases as the field penetration increases. In figure 6 we illustrate 
this fact by representing again the most dangerous mode frequency s, for B, = 10 and 
some values of A .  The highest frequency is always found for d = 0 and it decreases with 
dincreasing. The first natural frequency for A = 7c goes to zero asymptotically as dgoes 
to infinity, showing that this case is stable even when the field inside the conductor 
becomes uniform and steady. All these features are in accordance with the results 
discussed for the jet and with the conclusions given by Garnier & Moreau (1983). For 
their planar geometry the field increases the frequency of disturbances propagating in 
its direction. In our configuration, we may consider the surface perturbations as a 
combination of the infinite-column k-modes, satisfying both anchoring conditions. If 
so, each particular mode would have its frequency increased, according to figures 2 and 
3. Following this analogy, azimuthal modes in cylindrical geometry correspond to 
disturbances that are normal to the imposed magnetic field and they should not be 
affected by the field. These non-axisymmetric modes are stable in the absence of 
magnetic fields and their study does not seem to be relevant. 
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FIGURE 6 .  Natural frequency s1 of the axisymmetric mode, as a function of the relative penetration 
length d, for fixed magnetic Bond number B, = 10 and several values of the slenderness. 
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FIGURE 7. Stability curves in the A - B ,  plane for different values of the relative penetration length 
d. The case d = 2 already approximates that of perfect insulators, whilst the case d = 0 corresponds 
either to the case of infinite frequency (non-zero finite electrical conductivity) or to perfectly 
conducting fluids (non-zero finite frequency). 

The consequence of the increase in the natural frequencies with the applied magnetic 
field is to generally increase the critical slenderness for which there is neutral stability, 
i.e. s: = 0. In other words, the field has always a stabilizing effect on the liquid bridge. 
This effect decreases with an increase of the field penetration depth. In figure 7 the 
neutral stability curves in the (B,,A)-plane for different values of d are presented. 
Bridges with values of the parameters lying above the curves are stable and, conversely, 
those under these curves are unstable. The crucial role played by the relative 
penetration length is apparent from a comparison between the cases d = 0 and 2. 
Another perspective of the parameter space is given in figure 8, where we represent the 
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FIGURE 8. Stability limits in the d-B, plane for different values of the slenderness. Stable 
configurations correspond to points in the upper regions. For fixed slenderness the necessary value 
of B, to stabilize the liquid bridge decreases as d decreases. 

stability boundaries in the plane d, B, for several values of the Slenderness. It is 
apparent that, for d = 0 and over a not very narrow range of penetration lengths, the 
magnetic field is very effective in stabilizing long liquid bridges. 

To give an idea of the stabilizing effect we may again consider a cylindrical liquid 
bridge of radius R = 2 cm made of molten silicon. Typical frequencies for the 
alternating magnetic fields used in the floating-zone technique to grow single crystals 
are 4 MHz (Keller & Muhlbauer 1981). If we consider a much lower frequency, say 
lo5 Hz we have, as given in the introduction, a penetration depth 6 = m and, 
relative to the radius of the cylinder, d = 0.05. For this value the critical Bond number 
that makes a liquid bridge of slenderness A = 6 stable is B, = 3.62. The corresponding 
peak magnetic field intensity is B, = p , H ,  = 0.019 T, certainly a moderate intensity. 
Values two orders of magnitude larger than B, are normally used in laboratories. 
Therefore it could be interesting to test the ability of these magnetic fields to stabilize 
the melted zone in the floating zone technique. 

6. Conclusions 
A linear inviscid model to investigate the dynamics and stability of liquid metal or 

molten semiconductor columns in the presence of an axial alternating magnetic field 
has been presented. The results could be of interest in understanding the stabilizing 
effect of these fields in the context of the floating-zone technique, where a radio- 
frequency magnetic field generated by a circular coil is present. Observations made in 
connection with this technique show that the liquid zone is slenderer than expected 
(Keller & Muhlbauer 1981). It has been shown that even for moderate magnetic fields 
stabilization beyond the Rayleigh limit A = 7(: can be easily achieved if the relative 
penetration length is small. The penetration of the field inside the conductor decreases 
with an increase in the frequency or the electrical conductivity, and this feature is 
responsible for the increase in stability. 

The validity of the inviscid model is determined by estimation of a Reynolds number 
with R/t ,  as the velocity scale and the penetration length of the magnetic field inside 
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the conductor as the lengthscale. High-frequency fields give magnetic forces confined 
to a narrow layer near the free surface. Rapid variations of the radial velocity in this 
skin-depth layer cause the viscous forces to be not negligible. In spite of this limitation, 
the case of infinite frequency, giving superficial electric currents, is valid for arbitrary 
viscosity. 

The stabilization mechanism in the case of magnetic fields originates from the 
opposition of the liquid metal (or molten semiconductor) to the variation of the 
magnetic flux across the shape caused by its deformation. For alternating magnetic 
fields the flux variation is directly proportional to the frequency. A different situation 
arises in the case of the application of static magnetic fields. In the latter situation the 
convective term in (13) is the dominant one. Therefore our results cannot be extended 
to very low frequencies. In the limit of zero frequency Chandrasekhar has shown that 
liquid metals and molten semi-conductors behave as almost perfect insulators, 
contrary to a na'ive expectation. This should not imply that steady magnetic fields are 
useless in the float-zone technique as it is well known that d.c. fields tend to suppress 
convection in the melted zone (Baumgartl 1992). Thus an induction coil with a mean 
continuous component may help the process in two ways : stabilizing the free interface 
(a.c. component) and inhibiting the Marangoni induced convection in the melt 
(continuous component). 
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